

EGGA Assembly 2023 Salzburg, Austria

Aleksandra Cieplak, David Balloy

Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET -Unité Matériaux et Transformations, F-59000 Lille, France

19/06/2023

Partners of the project

UMET Unité Matériaux Et Transformations

Université de Lille

Aleksandra CIEPLAK

- 3rd year **PhD student in Materials Chemistry** at University of Lille
- Masters Degrees in Chemistry and Materials Chemistry at Ecole Nationale Superieure de Chimie de Lille and University of Lille

David BALLOY

Matériaux Et Transformations

Université de Lille

- **Professor** at University of Lille, Polytech'Lille
- **Researcher** in the domain of casting, reactivity of metals in severe environments and metal recycling at UMET laboratory

Context of the study – batch galvanizng

Université de Lille UMET Unité Matériaux Et Transformations

Problems with cycling galvanizing of holders

- **Corrosion** of steel (intermetallics' formation and their dissolution during stripping)
- **Deposition of zinc at the surface** during emersion

Université de Lille UMET

Protective materials in continuous galvanizing

316L	Ceramic coatings	Ti or Co based
stainless steel	and borides	alloys
 Resistant to the thermal shock Wetted by liquid Zn Increased cost of structures (steel 720€/t, SS 3 370€/t*) 	 Non-wetted by liquid Zn Brittle Non-resistant to thermal shock 	 Very high cost of material (Ti: 4790€/t, Co: 45000€/t*)

*Prices for 02/2023

• X. Ren, X. Mei, J. She, J. Ma, Materials Resistance to Liquid Zinc Corrosion on Surface of Sink Roll, Journal of Iron and Steel Research, International, 14 (5), 2007, 130-136

Université de Lille

• S. Ma, J. Xing, H. Fu, D. Yi, J. Zhang, Y. Li, Z. Zhang, B. Zhu, S. Ma, Interfacial morphology and corrosion resistance of Fe–B cast steel containing chromium and nickel in liquid zinc, Corrosion Science, 53 (9), 2011, 2826-2834

entralelille CNIS

INRAC

• J. Xu, X. Liu, M. Bright, J. G. Hemrick, V. Sikka and E. Barbero, Reactive Wetting of an Iron-Base Superalloy MSA2020 and 316L Stainless Steel by Molten Zinc-Aluminum Alloy, Metall Mater Trans A, 39, 2008, 1382-1391

Unité Matériaux Et Transformations

FeSi alloy resistance to molten zinc

• Weight loss of bulk Fe-Si materials in function of galvanizing cycles

- No zinc corrosion observed for wt% Si > 20%
- Bulk FeSi too brittle

Unité Matériaux Et Transformations

Université de Lille • Thermodynamic difficulties to form FeSi(20%wt) coating by fusion of the Fe-Si powder

OUR SOLUTION

A. Cieplak, D. Balloy

Fabrication of studied coatings

Université de Lille Unité Matériaux Et Transformations

- Slow cooling
- Controlled atmosphere

Zincophobic coating

Thickness ≈ 50 µm

HYPOTHES Formation of a very thin protect surface	S tive oxide layer at the	
Cientak D Ballov		ст

1.2 48.4 38.4 8.4 0.1 3.6 B2 6.3 0.2 12.7 0.1 46.4 B3 34.4 Β4 10.9 4.2 12.2 0.3 11.4 60.9

• Coating's composition analysed by EPMA (%wt)

Experimental procedure

RESULTS

A. Cieplak, D. Balloy

Cyclic galvanizing tests

Steel corrosion by liquid zinc

Composition of uncoated steel (DD13) (wt%)

•

Unité Matériaux Et Transformations

Université de Lille

С	Mn	Р	S
Max 0.08	Max 0.4	Max 0.03	Max 0.03

 Zn bath follows the ISO 1461 norm (additional elements: Al - 0.1%, Pb - 0.8%, Sn - 0.2%, Ni - 0.02%)

Cyclic galvanizing tests

IMPROVEMENTS

A. Cieplak, D. Balloy

Université de Lille

Preoxidation

Unité Matériaux Et Transformations

Université de Lille

Preoxidation

Zinc deposition

- 85% less zinc on the sample after the first cycle
- Increase of settled zinc during first 10 cycles for preoxidized samples
- Stabilisation around 11th cycle at 10.5 mg/cm²
 - \rightarrow 25% less zinc than for non-preoxidized samples

Université de Lille UMET

INRA

CNIS

e centrale**lille**

- > 30 galvanizing cycles
- The industrial partner does not need to dezincify the hooks between cycles

AXIMUM

Université de Lille UMET

- \checkmark Gain of performance of the site
- ✓ Decreased use of acid bath and zinc waste treatment

Uncoated steel hook with Zn

INRA

entralelille CNIS

Coated steel hook with Zn (30 cycles)

- ✓ 90% decrease in weight loss of Fe-Cr-Ni-Si-coated steel in liquid zinc in comparison to an uncoated carbon steel
- Lower surface wetting and 85% zinc savings if coated-steel is used
- ✓ Preoxidation further decreases zinc adherence and has small positive influence on corrosion
- ✓ First industrial tests give positive results
- → Optimisation of preoxidizing conditions

Perspectives on the industrial development

- Patent application pending
- \rightarrow Tests on different geometries of steel parts
- → Tests on the industrial scale and with bigger number of samples
- \rightarrow Formation of partnerships with interested galvanizers and opening of a new industrial activity
- Contacts for industrialisation:
- → Bruno Gay, B.Circle: bruno.gay1801@outlook.com
- → Jean-Pierre Leac, SATT Nord: jean-pierre.leac@sattnord.fr
- → David Balloy, Université de Lille: <u>david.balloy@univ-lille.fr</u>

To Hauts-de-France region and Lille University for financing the PhD thesis

To the project partners: EEIGM Nancy, Aximum and B.Circle

To **SATT Nord** for financing the patent

To **David Warichet** for his participation in the project

AXIMUM

Région

Hauts-de-France

Thank you for your attention!

Unité Matériaux Et Transformations

Université de Lille

Contacts for industrialisation:

- → Bruno Gay, B.Circle: <u>bruno.gay1801@outlook.com</u>
- → Jean-Pierre Leac, SATT Nord: jean-pierre.leac@sattnord.fr
- → David Balloy, Université de Lille: <u>david.balloy@univ-lille.fr</u>

Preoxidation

- About **10% of zinc** can be removed with small mechanical force on **non-preoxidized samples**
- Zinc on **preoxidized samples is very easy to remove at first cycles**, but the adhesion decreases following the **square root function**.

Université de Lille UMET

Number of galvanizing cycles